The instrumental error in each case was not more than 1%, but the table does show that the spread in the
results is over 1%, which is due to the random errors arising from visual determination.

The standard deviation may be employed [6] to determine the purely random error of measurement in
each method: one assumes that the data from a series of measurementsfitStudent’s distribution, and a confi--
dence limit ¢ of 0.99 is adopted (¢ is the probability that the true result falls in the confidence range), in which
the results for the TI-110 indicator are as follows: first method (109 + 1.8°C, second method 109.5 + 1°C, and

“third method 109.5 + 0,5°C.

The theory of errors [6] shows that not less than 25 measurements are required in the first method to
obtain the melting point with an error of not more than 1%, as against not less than ten measurements in the
second method, whereas the third method does not give a spread over 1% in any case,

This method was used to measure the switching points of indicators developed at the All~Union Lumino-
phor Research Institute, as well as for extra-purity substances with melting points in the range 50-1200°C [7].
These indicators have been used to advantage in research on the thermal processes in the VV-12 high-through-~
put glass-blowing machine,
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THEORY OF A CAPILLARY VISCOMETER

N. G. Sagaidakova UDC 532.517.2

| Problems in the theory of a capillary viscometer are considered where the test fluid flows
through the capillary under a varying pressure drop. The effect of transients on the flow is
evaluated.

Calculation of the viscosity according to the capillary method is based on the dependence of the volume V
of incompressible fluid which during time 7 flows through a capillary of radius R and length L on the constant
pressure difference AP between both ends, namely

q=_TRAPT @)
7

Relation (1) was first established experimentally [1] and then confirmed theoretically on the basis of the
steady-state solution to the Navier —Stokes equation [2].

In practical viscometry one often uses instruments where the test fluid flows through the capillary under
a varying pressure drop AP(r). Most common among such instruments is the Golubev— Petrov viscometer 3L
With it has been measured the viscosity of water, ammonia, carbonic acid, noble gases, alcohols, and other
fluids over wide ranges of states. According to the conventional method by which test data obtained with a
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TABLE 1, Characteristics of Viscometers Used for Obtaining the
Experimental Data in (10]

Visco- puring Hy

metey | R-10%M | L-102,m [H3-10% m flow Hf-lo’.mAHh;l“” In —HT—"W Vea
between m®
I—I1I | 6,611 7,19 | 0,165¢ | 0,3796

1 3,651 4,80 | 7,801 | I—IIT | 5,105 | 6.40 | 0.,4243 | 0,8480
I—I1 | 5,534 | 6,48 | 0,2940 | 0,4716

2 3,398 | 5,09 | 7,438 | I—i11 | 4,229 | 5.67 | 0.5632 | 0,7610
I—11 6,581 7,65 | 0,3112 [ 0,662

3 6,950 5,35 | 8,890 | /—III | 4,021 6.25 | 0,7949 | 1,338

SI
Contacts

7

ey

N

Wi

\

Fig. 1. Schematic
diagram of the vis-
cometer.

Golubev —Petrov viscometer are evaluated [4], calculations are made on the basis of Eq. (1) with the constant
pressure drop replaced by the logarithmic mean of the initial pressure drop AP; and the final pressure drop
APs. This mode of averaging is based on special calibration tests involving the viscosity of water [5] and has
not been justified theoretically, The exponential variation of the pressures at both ends on the capillary with
time while a liquid or a gas flow through the latter under atmospheric pressure is also based on visual ob-
servations of how the meniscus of mercury [6] and that of the test fluid [7] in the viscometer drop. Meanwhile,
the differences between the readings of a constant-pressure viscometer and a variable-pressure viscometer
respectively do exceed the total experimental error and cast some doubt on the validity of using the steady-
sate solution (1) for evaluation of data obtained under conditions of a varying pressure drop.

A theoretical expression for experimental determination of the viscosity under conditions of a varying
pressure drop has been derived in earlier studies [8, 9] for a Rankin viscometer, In [8] the authors start with
the Hagen—Poiseuille equation, i.e., the steady-state solution; in [9] the authors start with the differential
equation of motion, but the assumptions made in the process of its solution lead to a result inconsistent with
the physical nature of the process.

In this study the trend of the pressure drop as a function of time will be established by solving the dif-
ferential equation of motion and subsequently analyzing the effect of transiency on that relation.

The motion of an incompressible fluid in a capillary can be described by the Navier —Stokes equation of
laminar flow parallel to and symmetrically with respect to the axis

D(2Y L)L sk _w
p "\ or? r Or) p L T @)

where U is the velocity of a fluid particle at time 7 at distance r from the axis of the capillary and AP(t) is the
pressure drop from one end of the capillary to the other. This equation does not take into account losses of
pressure on generating the kinetic energy of flow and on forming a parabolic velocity profile in the entrance
zone of the capillary. These effects can be accounted for, asis done conventionally [4], if the trend of U(r) as
a function of time is known. In deriving a functional relation between the pressure drop and time, we consider
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a viscometer different from the conventional one in that it has a cylindrical test space and intermediate con-
tacts (Fig. 1). Viscometers of such a construction (their geometrical parameters are given in Table 1) have
been used for measuring the viscosity of several Freons and of nitrogen at various temperatures and pres-
sures {10]. The errors in recording the mercury level in the wide arm of the test space can be greatly re-
duced by automating the process of viscometer calibration, Stability of separation of the mercury meniscus
from the confacts was quite satisfactorily confirmed by the reproducibility (within 0.2-0,3%) of the experimen-
- tal values.

The volume dV of fluid flowing in the capillary and the change of pressure drop dAP(7) between the ends
of the capillary occurring in time d7 can be expressed in terms of changes in the mercury levels H; and Hz,
namely

_§; -
dAP () = d (Hy — Hy) 8y (4)

where S; and S, are the cross-sectional areas of the two cylindrical containers of the viscometer. Meanwhile,
R
dv = 5‘ 2alrdr. (5)

Expressions (3), (4), and (5) inserted into Eq. (2) transform the latter to

T

n (o 1 U _2:1ngg M_l_ j‘j‘Udd _ U
p (6r2 T r ar) oL (S,+ ) rares 61'_ (6)

0

An analogous equation was obtained in [9] for describing the flow in a Rankin viscometer. Owing to the mathe-~
matical difficulties in obtaining an exact solution, an approximate solution was obtained in [9] indicating an
oscillatory variation of the pressure drop during gravity flow through the capillary — inconsistent with the
physical pature of the phenomenon. This result can be explained as a consequence of seeking in [9] a solution
to an equation like (6) in the form of a double infinite series in powers of the parameter A = 7/0R?, although this
is not a small parameter in viscosity measurements.

In order to obtain an approximate solution to the integrodifferential equation (6), it will be suggested
here that the acceleration 8U/37 due to a change of pressure AP(r) drop during flow is negligible in compari-
son with the sectional velocity gradient due to viscous forces. Then

L (_ajgi. 4+ 1 b )_ 2ngoug (—-L + -L) S‘S Uyrdrdt = 0, )
p or? r or pL Sj Sz .

where Uy is the approximate value of velocity U on the assumptlon that 8U/0r = 0, If at the instant 7 = 0, some
time after the fluid has physically begun to move in the capxllary, the pressure drop from one end to the other
end of this capillary is AP;, then

AP;
Ui(r, 0) = LR®— 1%, t
i(r, 0) L (R ) {7}
The boundary conditions here are determined by adhesion of the fluid to the capillary wall and by the finiteness
of the fluid velocity along the capillary axis, namely
Uy (R, 1) =0, U0, 1)~ 0. ‘ (Y

The solution to the quasisteady problem formulated according to":Eq. {7) with the initial condition (7') and the
boundary conditions (7") is

Uw—ﬁwAP exp<~mv>2_'-—13—‘f(’-fp—3—or U= ®
- iﬁ; -exp (—mt)}(R? — r?),
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TABLE 2. Some Results of Experimental Determination Pertaining
to the Viscosity of Liquids and Gases, and of Calculations Pertain~
ing to the Characteristic Flow Numbers '

Parameters Npo -

Sub= e N-107, 1 o, | o V/R%, | 7 100%| Np 104
. 3 . viRE Re 10

stance T/Tgy |P/Byy Pa-secikg/m®| sac |1/seC| 1 jae

F12V1l | 0,57 | 2,2 | 6200 | 2010 | 272 | 62,8 | 0,0011 | 0,002 78,6 0,67
F22 0,81 10,22 11620 | 1190 | 71,4 1 26,9 | 0,004 0,01 670 0,67
F13V1 | 0,86 | 0,38 | 1500 | 1570 | 69,8 | 19,5 | 0,004 0,02 987 0,67
- F2 0,851,041 1313 | 1193 | 58,8 | 22,4 | 0,005 0,02 1017 0,67
Nitrogen| 3,2 | 0,03 | 229 | 0,87 | 64,0 {19500 | 0,003 0,001 3,9 2,49
Nimogen| 3,2 | 0,8 233 | 22,4 | 66,3 | 780 | 0,003 0,001 90 2,49
F502 1,02.1.1,21 | 407 | 625 | 124 | 48,4 | 0,001 0,003 760 2,49
F502 10,94 | 0,5 157 | 102 46 | 116 | 0,004 0,003 870 2,49
Nitrogen| 2,3 [ 0,03 | 178 | 1,25 111,6 ;12300 | 0,003 | 0,001 5,4 3,7
F12Vl 1 p,64 | 0,02} 120} 7,0 76,3} 1520 | 0,004 0,001 70 3,7
F13V1 | 1,05 | 2,5 930 | 1300 | 663 | 61,8 | 0,0005 0,001 181 3,7
F13v1 | 1,003} 0,89 { 260 | 5i5| 179 | 43,6 | 0,002 0,004 948i 3,7

*F indicates Freon,,

AT,

* 0
00 YRR

0

f

1] 300 . 600 00 1200 Npe

Fig. 2. Dependence of the number v7/R?
on the number Ng,,, at various values of
the homochronism number Ny,: 1) 0.67-
10% 2) 2,49.105%; 3) 3,70 108,

where
_ AmgougRt( 1, _1_) 2__1.
" WL \S; S ) dwd BT
and pf = #¢/R are roots of the Bessel function Jo(r/R). This together with Egs. (2), (3), and (5) yields
‘ AP (7) = AP, exp (— ). ' ®

Consequently, a logarithmic averaging of the pressure drop over time in the case of a quasisteady flow is
correct only for viscometers with a cylindrical test space and this has been confirmed experimentally {6, 7].

In order to estimate the error due to disregarding the transiency when Eq. (6) is replaced with Eq. (7),

one has to insert into Eq. (2) the value of AP(T) according to expression (9)
v(aﬁv 1 aU) AP; U

i
T

ot ',-"5; oL exp(-tm)z—b;- ' (10)

The initial condition is (7') and the boundary conditions are (7"). The solution to the second-order linear dif-
ferential equation with the transient inhomogeneity (10) is

2R°AP WY _ o (per) N 2o (en)
U, v = ! ; exp (— vpit) -+
0= ML PO }; eds (1) (1)

AP; 1

-t ey f —— —_ — 2
oL vpimm [exp (— mt) — exp (— vpEo)l.
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The first term of expression (11) describes the radial velocity profile in the capillary at the time zero and de-
creases proportionally to exp (— vpgiT):

VT 2N
fog‘c =N-—-R2 y,% = ——-———QN;Z pt;. (12)

An evaluation of (/R% from viscosity data for several Freons [10] and for nitrogen (Table 2) reveals that

exp (—vp%’r) tends tozerofor 7= 0,05 sec. In the physical sense the first term characterizes the change in
velocity of laminar flow following a step change of the driving force from some magnitude to zero, A com-
parative evaluation of quantities v/R* and m (Table 2) in the second term of expression (11) suggests that, with-
in an accuracy better than 0,02%, m can be regarded relative to v/R%. Consequently, the quasisteady solution
(8) and the transient solution (11} to the integrodifferential eguation (8) become equivalent when the characteris-
tic flow numbers v7/R? and NHo are within the range of values indicated in Fig, 2. Here the dashed lines re-
present the limiting values of »7/R? below which disregarding the transiency will result in an error larger than

0.03%.

It appears from the preceding discussion that flow characterized by certain values of numbers vr/R? and
Ny can be described by the quasisteady model without, for all practical purposes, affecting the accuracy of
experimental results. An exponential variation of the pressure drop with time during quasisteady flow is
correct {o assume also for viscometers of other constructions, as long as the test space in them has a uniform
cross section throughout its height, as has been confirmed experimentally {6, 7].

In practical calculations of the viscosity from experimental data it is necessary to add corrections for
the kinetic energy as well as for the turbulence of flow at the entrance to the capillary

T

e T 1 1
AP1 == mijZ, U= T j‘ -—*2~—U(0, T) d'U, (13)
0
where the empirical coefficient my accounts for loss of pressure within the entrance zone of the capillary and
U represents the average mean, over time and cross section, velocity of the fluid. Together with solution (8},
then, relations (13) yield the conventional [4] correction for the kinetic energy and the existence of an entrance

Zone.

NOTATION
v, 1, p are respectively the kinematic viscosity, the dynamic viscosity, and the density of the fluid
flowing through the capillary;
PHg is the density of mercurcy;
g is the acceleration of free fall;
P ' is the test pressure;
T ig the test temperature;
Peop and Ty are the pressure and the temperature at the critical point;
H; and H, are the mercury levels in the viscometer at time 7;
H; and Hy are the initial and the final mercury levels in the viscometer;
AHip is the logarithmic mean difference of mercury levels during flow;
Vmea is the volume of the test space;
R is the capillary radius;
L is the capillary length;
AP is the pressure drop from one end of the capillary to the other;
Hep is the root of the Bessel function J¢(r);
NRre is the Reynolds number;
Nyuo is the homochronism number.

LITERATURE CITED

G. Hagen, Annalen Phys. Chemie, 16, 423 (1839).

G. G. Stokes, Trans. Cambridge Philos, Soc., 8, 284 (1845).

I, F. Golubev, Viscosity of Gagses and Gaseous Mixtures [in Russian], Fizmatgiz, Moscow (1959),

I. F. Golubev and N. A. Agaev, Viscosity of Saturated Hydrocarbons [in Russian], Azerneshr, Baku
(1964),

B> W B
e .

461



g

N. A. Agaev and A, D, Yusibova, Teploenergetika, No. 9 (1969).

6. I. F. Golubev and G. G, Kovarskaya, in: Chemistry and Technology of Products of Organic Synthesis
[in Russian], Department of Scientific-Technical Information, State Scientific-Research and Planning
Institute of the Nitrogen Industry and Products of Organic Synthesis (Izd, ONTI GIAP), No, 8 (1971),

7. I F. Golubev and T, M. Potikhonova, in: Chemistry and Technology of Products of Organic Synthesis
[in Russian], Izd. ONTI GIAP, No. 8 (1971),

8. J. Kestin, M. Sokolov, and W, Wakeham, Appl. Sci. Res., 27 (1973).

9. M. Reiner and R. Takserman-Krozer, Rheol. Acta, 9, No. 3 (1970).

10. N. G, Sagaidakova, Information Note [in Russian], Central Scientific-Research Institute at the Ministry
of Trade (Izd. MTTsNTI), Leningrad (1976), No. 1518,

CHARACTERISTICS OF A FLOW OF MONODISPERSE
GAS— LIQUID MIXTURE IN A VERTICAL TUBE

N. V, Valukina, B. K, Koz'menko, UDC 532.529.5
and O, N. Kashinskii

The results of measurement of the wall shear stress, and the void and liquid-velocity profiles
in an ascending two-phase flow containing gas bubbles of uniform size are given. It is shown
that the bubble size has a significant effect on the flow structure and characteristics,

The need to investigate the fine structure of two-phase flows is due to the complex motion of the phases
and to the large number of parameters that affect the characteristics of such flows. Several experimental
studies [1-3] have shown that there may be different local void distributions over the tube cross section, which
must obviously affect other characteristics of the flow (velocity profile, wall shear stress, heat- and mass-
transfer coefficients). Bubbly flow, which is often encountered in engineering applications, has been most
poorly investigated so far. The presently available and very few measurements of the friction factor in these
conditions [4-6] indicate the presence of a region of sharp increase in the wall shear stress in comparison
with single-phase flow at low values of void fraction, The relations 7/7(f) were not identical in the different
investigations and in a number of cases a single relation could not be obtained even in the same experiment [5,
6]. It follows from this that in a particular region of parameters we do not have sufficient knowledge of the

Fig. 1. Generator of calibrated
gas bubbles: 1) case; 2, 3) rings;
4) insert; 5) gas input; 6) slit
liquid input; 7) central liquid in-
put.
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